
Efficient Demands in Multi-product Monopoly∗

Kai Hao Yang†

April 18, 2021

Abstract

This paper characterizes the efficient market demands among those with a fixed sur-

plus level in a multi-product monopoly where the monopolist is able to produce a contin-

uum of quality-differentiated products with a cost function that is convex in quality. We

show that any efficient market demand must be affine-unit-elastic. This further reduces

the problem of characterizing the efficient frontier to a finite-dimensional constraint op-

timization problem. From this characterization, it follows that deadweight losses are

positive even under efficient demands; that both consumer surplus and monopoly profit

are nonmonotonic in cost function; and that the monopolist sells at most two distinct

quality levels under any efficient market demand.
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1 Introduction

For more than a century, monopoly pricing has been one of the most salient part of modern

economic analysis. Various streams of literature and numerous studies have widely explored

the welfare consequences and the allocative outcomes in monopoly markets. Naturally, the

implications on welfare and allocation largely depend on features of the market demand and

the technology. In other words, a comprehensive understanding of the welfare and allocative

effect of market demands and technology is essential for the theory of monopoly. After all,

market demands and technologies are by no means constant across time and space, and can

be greatly influenced by various economic activities. For instance, the demand function in

a market can be affected by product design, marketing, advertisement, consumers’ income

distribution, or change of conditions in other markets; whereas the production technology can

be altered by innovation, product line management, or vertical integration. Consequently,

a natural question arises: How do market demands and technologies affect the welfare and

allocative outcomes in a monopoly market?

In a seminal paper, Johnson and Myatt (2006b) approach this question from a perspective

of comparative statics. They consider a particular (one-dimensional) form of changes in

demands (i.e., the rotational order, which measures how dispersed the consumers values

are) that can naturally arise under canonical models of product design, advertisement, and

product line transformations. Within this one-dimensional demand changes, they show that

in both a single-product monopoly and a quality-differentiated multi-product monopoly, the

monopolist’s profits are quasi convex, meaning that the monopolist would prefer the “least

dispersed” or the “most dispersed” market demands.

Parallel to the one-dimensional comparative statics analysis, Roesler and Szentes (2017)

approach the same question by focusing on a single-product monopoly setting, and exploring

the entire set of welfare outcomes that can be induced by an infinite dimensional set market

demands (i.e, those satisfying a mean preserving contraction constraint).1 While restricting

attention to a single-product monopoly brings a great amount of tractability and allows

them to fully characterize the entire set of monopoly profit and consumer surplus, as well

as the demand functions that induce each of the payoff pairs, it rules out the possibility

that the monopolist can produce quality-differentiated products. This exclusion is crucial

since a monopolist would generally offer different products and engage in second-degree price

discrimination when she can produce quality-differentiated products (see, for instance, Mussa

and Rosen (1978)), rather than selling a single product alone.

1Although motivated as buyer’s information, a marginal distribution of interim expected value in Roesler

and Szentes (2017) is in fact equivalent to a market demand satisfying a mean preserving contraction con-

straint. Relatedly, some of the results of Condorelli and Szentes (2020) can also be regarded as characterizing

the consumer-optimal demands under various constraints induced by certain information costs.
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In this paper, we take the infinite dimensional approach of Roesler and Szentes (2017)

and explore the welfare and allocative consequences of market demands in a multi-product

monopoly. Specifically, consider a monopolist who is able to produce a continuum of quality-

differentiated products with a cost function that is convex in quality level. The main result

of this paper characterizes the efficient market demands among those with the same surplus

level (with a fixed highest possible consumer value).2 That is, we solve for the market

demands under which no other demands with the same level of total surplus can induce

higher consumer surplus and monopoly profit at the same time. We show that for any given

surplus level and for any (well-behaved) technology, any efficient market demand must be

affine-unit-elastic, in the sense that it is an affine transformation of a (truncated) unit-elastic

demand. This effectively reduces the problem of characterizing the efficient frontier to a

finite-dimensional problem, even though the set of feasible demands is infinite-dimensional.

Using the main characterization, we are able to derive further implications regarding

the welfare and the allocative outcomes, as well as the effect of technologies. Specifically, we

show that deadweight losses are generically positive even under the efficient market demands.

This is in contrast to the case of a single-product monopoly, where the results of Roesler

and Szentes (2017) (surprisingly) imply that the deadweight loss must be zero under all

efficient market demands. Furthermore, the characterization of the efficient frontier allows

us to conduct comparative statics analyses regarding the effect of production technologies.

Specifically, we show that the optimal consumer surplus is quasi-convex in technologies ranked

by the rotational order; and that the efficient payoff frontier may shift “inward” even when

production costs for each quality level decrease. These suggest that the effect of changes

in production technology is generally nonmonotonic in a multi-product monopoly. Lastly,

as a feature of affine-unit-elastic demands, the main characterization implies that only two

quality levels are sold under any efficient market demand. This provides a possible rationale

for the use of simple menus, and indicates that the market outcome can be improved via

demand manipulation when a monopolist is observed to sell numerous quality-differentiated

products.

Compared with a single-product monopoly, the optimal selling mechanism in a multi-

product monopoly is much more complicated. Indeed, instead of charging a one-dimensional

optimal monopoly price, the monopolist would engage in second-degree price discrimination

and use a menu to screen the consumers. As a result, the arguments of Roesler and Szentes

2When defining efficiency, we allow for all possible demands with a fixed surplus level. The reason is

that, on one hand, after characterizing the efficient demands for each fixed surplus level, we can then obtain

the entire efficient frontier among every possible demands by varying the one-dimensional surplus level. On

the other hand, sometimes there may be an exogenous reasons that prevent the demands from changing in

level and only allow for changes in curvatures (see Johnson and Myatt (2006b)). We discuss more about this

assumption in Section 6.
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(2017) cannot be extended to a multi-product monopoly setting, as they heavily rely on the

simple structure of a single-product monopoly pricing problem. To overcome this technical

challenge, we first follow the insight of Johnson and Myatt (2003), Johnson and Myatt

(2006a), Johnson and Myatt (2006b) and transform a multi-product monopoly model into

a continuum of single-product monopoly pricing problems where the monopolist operates

in different “upgrade markets” under different (constant) marginal costs. This allows us

to rewrite the monopolist’s profit and consumer surplus in a multi-product monopoly into a

mixture of single-product monopoly profit and consumer surplus over a continuum of upgrade

markets, with weights described by the inverse marginal cost function. Then, we adopt a

local perturbation argument and show that, any market demand that is not affine unit

elastic can always be locally perturbed and transformed into another marker demand that

(i) has the same surplus level, (ii) induces approximately the same monopoly profit in every

upgrade market, and (iii) induces higher consumer surplus in a positive measure of upgrade

markets. This then implies that any efficient market demand must be affine-unit-elastic.

Finally, existence of efficient market demands are ensured by a technical result ensuring that

the consumer surplus and the monopoly profit are upper-semicontinuous and continuous in

market demand, respectively

The rest of this paper is organized as follows. In the next section, we discuss the related

literature. In Section 3, the model and the definition of efficient market demands are intro-

duced. The main result, as well as the outline of its proof is stated in Section 4, followed by

further implications in Section 5. Lastly, Section 6 discusses the assumptions, interpretations,

and implications of the model while Section 7 conclude.

2 Related Literature

As discussed in Section 1, this paper is closely related to Johnson and Myatt (2006b), Roesler

and Szentes (2017). Specifically, while Johnson and Myatt (2006b) consider comparative

statics regarding a parameterized change in demand, this paper characterizes the efficient

ones among those with the same surplus level. Meanwhile, while Roesler and Szentes (2017)

solve for the efficient market demands among those satisfying an arbitrary mean preserving

contraction constraint in a single-product monopoly, this paper considers a similar problem in

a multi-product monopoly and relaxes the mean preserving contraction constraint to a surplus

level constraint.3 Relatedly, Condorelli and Szentes (2020) solves for the consumer-optimal

demand in a single-product monopoly setting where the choice of different demands costs

differently, whereas the choice of demand is costless (as long as they have the same surplus

3Equivalently, using their interpretation, this paper focuses on a prior with binary support {0, 1} whereas

Roesler and Szentes (2017) allows for general prior
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level) in this paper.4 It is noteworthy that unit elastic demands are crucial for both Roesler

and Szentes (2017) and Condorelli and Szentes (2020). In the meantime, Haghpanah and

Siegel (2020) and Haghpanah and Siegel (2021) also study welfare consequences of demands

in a multi-product monopoly. They focus on how market segmentations—ways to split

the market demand into several market segments to facilitate price discrimination—affect

monopoly profit and consumer surplus.

Unit-elastic demands and their variants have also appeared in many other papers in

various literatures. A crucial property of this family of demands is that a (single-product)

monopoly is indifferent among all the prices at which the demand function is strictly decreas-

ing, which in turn is related to the worst-case demands in robust pricing or auction problems

(e.g., Neeman (2003), Bergemann and Schlag (2011), Brooks (2013), Libgober and Mu (forth-

coming)), supporting an equilibrium strategy (e.g., Varian (1980), Renou and Schlag (2010),

Ravid, Roseler, and Szentes (2019)), or enhancing consumer surplus (e.g., Condorelli and

Szentes (2021), Bergemann, Brooks, and Morris (2015)).

As explained by Johnson and Myatt (2006b), many economic activities can shape the

market demand. Therefore, this paper is also related to Lancaster (1975), who considers a

product design problem that may change the dispersion of consumers’ values due to taste.

Meanwhile, information is also a factor that would affect demand functions. From this per-

spective, this paper is related to the advertisement literature and the recent development

of information design. Specifically, Lewis and Sappington (1991) studies an advertisement

model where truth-or-noise information is given to the consumers and show that the mo-

nopolist would prefer the consumers to be either fully informed or completely uninformed.

Libgober and Mu (forthcoming) studies a dynamic robust monopoly pricing problem where

the monopolist evaluates the buyer’s information by a worst-case criterion. Bergemann and

Pesendorfer (2007) examine an optimal auction problem where the seller can disclose any

information to (uninformed) buyers independently. Methodologically, the model of this pa-

per is equivalent to an information design problem where only the expectation of that state

variable is payoff relevant. However, since consumer surplus is a non-convex function of mar-

ket demands, the duality method of Dworczak and Martini (2019) and the extreme-point

method of Kleiner, Moldovanu, and Strack (forthcoming) do not apply.

4In fact, out surplus constraint corresponds to the special case of mean-based costs in Condorelli and

Szentes (2020).
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3 Model

3.1 Primitives

A monopolist (she) sells a continuum of quality-differentiated products to a unit mass of

consumers. Quality levels are indexed by q ∈ [0, 1]. Consumers have unit demand (i.e., each

consumer buys at most one quality level) and quasi-linear utility with heterogeneous values

distributed on [0, 1]. For a consumer with value v, his utility from buying quality q and

paying p is vq − p.

3.2 Technology

To produce a product with quality q, the monopolist incurs cost C(q) ≥ 0. We focus on the

case where the cost function C is convex and does not have a fixed cost (i.e., C(0) = 0). For

any convex function C : R+ → R+, define the marginal cost function C ′ : R+ → R+ as the

right derivative5 of C and define γ : R+ → [0, 1] as

γ(c) := inf{q ∈ [0, 1]|C ′(q) ≥ c}, ∀c. (1)

By definition, γ : R+ → [0, 1] is nondecreasing and right-continuous. As a result, every convex

cost function C without a fixed cost induces a nondereasing and right-continuous function

γ : R+ → [0, 1]. Conversely, any nondecreasing and right-continuous function γ̃ : R+ → [0, 1]

uniquely defines a convex cost function C̃ without a fixed cost.6 Henceforth, we use a

nondecreasing and right continuous function γ : R+ → [0, 1] to describe the technology,

and denote the set of these functions as Γ. Moreover, we say that a technology γ ∈ Γ is

regular if there exists c̄ ≥ 1 such that γ is strictly increasing and Lipschitz continuous on

[0, c̄].7

5That is,

C ′(q) := lim
q′↓q

C(q′)− C(q)

q′ − q
, ∀q ∈ [0, 1]

6To see this, let c̃(q) := inf{c ≥ 0|γ̃(q) ≥ c} for all q ∈ [0, 1] and let C̃(q) :=
∫ q
0
c̃(z) dz.

7This means that every regular γ corresponds to a cost function that is strictly convex cost with C(0) = 0

and C(1) ≥ 1. The assumption that C(1) ≥ 1 is not essential but it simplifies the notation since otherwise

market demands would have a payoff-irrelevant part (i.e., when v ≥ c̄), which makes the characterization

less sharp. Meanwhile, the continuity and monotonicity assumptions are crucial since the proof of the main

result relies on a local perturbation argument.
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3.3 Market Demand

The distribution of consumers’ values v is described by a market demand D, where D : R+ →
[0, 1] is a nonincreasing and upper-semicontinuous8 function with D(0) = 1 and D(1+) = 0.

The interpretation is that for any price p, the share of consumers who are willing to buy the

product with quality q (i.e., the share of consumers with v ≥ p/q) would be D(p/q).

Given a market demand D, the amount of total surplus in the economy is given by the

area below the demand curve:9 ∫ 1

0

D(v) dv.

As discussed in Section 1, we explore every possible market demands that yield the same

level of total surplus. As such, for any s ∈ (0, 1) let

Ds :=

{
D : R+ → [0, 1]

∣∣∣∣D is a market demand,

∫ 1

0

D(v) dv = s

}
be the collection of market demands that have surplus level s.

3.4 Market Outcomes

Given any market demand D and any technology γ, as shown by Johnson and Myatt (2003),

Johnson and Myatt (2006a), and Johnson and Myatt (2006b), the optimal selling mechanism

for a multi-product monopolist (Mussa and Rosen, 1978) is equivalent to a collection of

single-product monopoly pricing problems. That is, we may describe the market outcomes by

considering the monopolist selling in a continuum of “upgrade markets” at different (constant)

marginal cost for each upgrade. The monopoly profit (consumer surplus, resp.) is given by

the mixture of profits (surplus, resp.) of each individual upgrade market, according to the

(nondecreasing and right continuous) function γ.10

8Upper-semicontinuity is equivalent to consumers breaking tie in favor of the monopolist, which is nec-

essary for the existence of the monopolist’s optimal selling mechanism. This can be guaranteed if we view

the model as an extensive form game where the monopolist set prices first and consumers make purchase

decisions afterward.
9Equivalently, total surplus equals to the expected value under the probability measure µD associated

with the demand D. Using integration by parts, we have∫ 1

0

vµD(dv) = −vD(v)
∣∣v=1

v=0
+

∫ 1

0

D(v) dv =

∫ 1

0

D(v) dv.

10Although Johnson and Myatt (2003), Johnson and Myatt (2006a), and Johnson and Myatt (2006b) derive

this equivalence under the assumption that there are only finitely many quality levels, the result can be easily

extended to the model with a continuum of quality levels. A formal statement and its proof can be found in

Lemma 2 of Yang (2020),
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More specifically, the monopolist’s optimal profit under market demand D and technology

γ is a mixture of single-product monopoly profits across every upgrade markets:

Π(D|γ) :=

∫ c̄

0

max
p≥0

[(p− c)D(p)]γ(dc),

whereas the consumer surplus is a mixture of their surplus across every upgrade markets:

Σ(D|γ) :=

∫ c̄

0

(∫ 1

pD(c)

D(v) dv

)
γ(dc),

where pD(c) is the smallest element of argmaxp≥0(p− c)D(p).11 Henceforth, for each c ≥ 0,

we refer the single-product monopoly pricing problem with marginal cost c ≥ 0 as upgrade

market c.

4 Efficient Market Demands

In this section, we present the main result of this paper. As described in Section 1, our main

goal is to characterize the efficient market demands for any fixed surplus level s ∈ (0, 1) and

any regular technology γ ∈ Γ. Efficient market demands are those that yield undominated

pairs of monopoly profit and consumer surplus. Specifically:

Definition 1. For any s ∈ (0, 1) and for any γ ∈ Γ, a market demand D is (s, γ)-efficient if:

1. D ∈ Ds;

2. There does not exist any D′ ∈ Ds such that Π(D′|γ) ≥ Π(D|γ) and Σ(D′|γ) ≥ Σ(D|γ),

with at least one inequality being strict.

To state the main results, we first introduce a crucial class of market demands, which we

call the affine-unit-elastic demands. For any π, k, η ≥ 0 such that π/η + k ≤ 1, define the

market demand Dη
π,k as follows:

Dη
π,k(v) :=


1, if v = 0

η, if v ∈
(

0, π
η

+ k
]

π
v−k , if v ∈

(
π
η

+ k, 1
]

0, if v > 1

,

11Here, selecting the smallest optimal price is without loss because our main interest is in maximizing

welfare. To see this, notice that whenever there are multiple optimal prices for the monopolist, consumers

would always be weakly better-off if the monopolist selects a lower optimal price, while the monopolist would

always be indifferent among all optimal prices.
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Figure 1: Affine-Unit-Elastic Demand Dη
π,k

p

q
π

1−k

π
η + k

η

Dη
π,k

1

for all v ≥ 0.12

Figure 1 plots (the inverse demand of) Dη
π,k.

13 Notice that Dη
π,k has two jumps, one at

v = 0 with size 1 − η and the other at v = 1 with size π/(1 − k) (and hence the inverse

demand in Figure 1 has two flat regions, [0, π/(1 − k)] and [η, 1]). Furthermore, the affine

transformation Dη
π,k(v + k) has unit elasticity on the interval (π/η, 1− k]. In terms of value

distribution, this means that under market demand Dη
π,k, η share of consumers have value

v = 0 and π/(1−k) share of them have value v = 1. Furthermore, the consumers with values

between π/η+k and 1 are distributed in a way such that the monopolist is indifferent among

charging any prices p ∈ (π/η + k, 1] in upgrade market k. With this definition, we can now

state the main result.

Theorem 1. For any surplus level s ∈ (0, 1) and for any regular technology γ ∈ Γ. The

set of (s, γ)-efficient demands is nonempty. Furthermore, every (s, γ)-efficient demand is

affine-unit-elastic.

A major implication of Theorem 1 is that, even though Ds is an infinite dimensional

set, characterizing the efficient market demands among those with the same surplus level

is essentially a finite dimensional problem. In particular, finding the market demand that

maximizes consumer surplus (monopoly profit, resp.) among every possible demand with the

same surplus level becomes a finite dimensional problem that can be completely solved.

Specifically, notice that for any affine-unit-elastic demand Dη
π,k, the monopolist’s (small-

est) optimal price equals to π/η+ k in all the upgrade markets c ≤ k; and equals 1 in all the

12Note that Dη
π,k(v) = Dη

π,0(v − k) for all v ∈ [π/η + k, 1], which is a (truncated) affine transformation of

a demand that has unit-elasticity on [π/η, 1].
13Formally, the inverse demand of D is defined as D−1(q) := sup v ∈ [0, 1]|D(v) ≥ q, for all q ∈ [0, 1].
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upgrade markets c ∈ (k, 1]. As a result, consumer surplus under Dη
π,k ∈ Ds is

Σ(Dη
π,k|γ) =

∫ k

0

(∫ 1

π
η

+k

Dη
π,k(v) dv

)
γ(dc) = γ(k)

(∫ 1

0

Dη
π,k(v) dv −

∫ π
η

+k

0

Dη
π,k(v) dv

)

=γ(k)

[
s− η

(
π

η
+ k

)]
=γ(k)(s− π − ηk)), (2)

whereas the monopolist’s profit is14

Π(Dη
π,k|γ) =

∫ k

0

(
π

η
+ k − c

)
Dη
π,k

(
π

η
+ k

)
γ(dc) +

∫ c̄

k

(1− c)Dη
π,k(1)γ(dc),

=

∫ k

0

(
π

η
+ k − c

)
ηγ(dc) +

∫ c̄

k

(1− c) π

1− k
γ(dc)

=

∫ k

0

[π + (k − c)η]γ(dc) +

∫ c̄

k

(1− c) π

1− k
γ(dc). (3)

Together with Theorem 1, this means that the efficient frontier given any s ∈ (0, 1) and any

regular γ ∈ Γ can be characterized by only three parameters π, k, η with two constraints:

π/η + k ≤ 1 and Dη
π,k ∈ Ds.

The proof of Theorem 1 can be found in the appendix. In what follows, we outline the

main ideas of the proof of Theorem 1. Notice that for any s ∈ (0, 1) and for any regular

γ ∈ Γ, the set of efficient market demands equals to the solutions of the following class of

optimization problems:

sup
D∈Ds

[αΠ(D|γ) + βΣ(D|γ)]

= sup
D∈Ds

[∫ c̄

0

(
α ·max

p≥0
(p− c)D(p) + β ·

∫ 1

pD(c)

D(v) dv

)
γ(dc)

]
(4)

for some α, β ≥ 0 with α + β > 0. Therefore, characterizing the set of efficient market

demands is equivalent to solving (4) for every α, β ≥ 0 with α + β > 0.

To better understand (4), we first consider a relaxed problem, where the market demands

are allowed to be conditioned on each upgrade market. That is, instead of finding a market

demand D ∈ Ds that maximizes the mixture of the weighted sum of monopoly profit and

consumer surplus, we first solve for the market demand that maximizes the weighted sum in

a given upgrade market c ∈ [0, 1]. This relaxed problem is studied by Roesler and Szentes

(2017). In fact, they show that for any s ∈ (0, 1) and for any upgrade market c ∈ [0, 1], an

affine-unit-elastic demand Dη
π,c solves this relaxed problem.

14As a notational convention, we write
∫ b
a
f(x) dx = 0 for any integrable function f whenever a > b.
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Figure 2: Upgrade Market c

p

q
c

pD(c)

π + c

1
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D1
π,c

Profit under D

Surplus under D
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(a) D and D1
π,c

p

q
c

pD(c)
π
η + c

η

D

1

Dη
π,c

Surplus under D

Surplus under Dη
π,c

(b) Dη
π,c ∈ Ds

To see this, consider any market demand D ∈ Ds and any upgrade market c ∈ [0, 1].15 The

monopoly profit and consumer surplus under this demand in upgrade market c are depicted

by the shaded areas in Figure 2a. Let π := (pD(c) − c)D(pD(c)) be the monopoly profit

under D in upgrade market c. Optimality of pD(c) implies that

(v − c)D(v) ≤ (pD(c)− c)D(pD(c)) = π ⇐⇒ D(v) ≤ π

v − c
,

for all v ∈ (c, 1]. Therefore, as depicted in Figure 2a, the affine-unit-elastic demand D1
π,c is

always above D. Moreover, any price in the interval [π+c, 1] generates the same profit for the

monopolist in upgrade market c under the affine-unit-elastic demand D1
π,c. In other words,

we may regard this affine-unit-elastic demand as an iso-profit curve for the monopolist in

upgrade market c, where the parameter π describes the profit level. From this perspective,

the optimal price pD(c) in market c is given by the price at which market demand D is

tangent to the iso-profit curve D1
π,c and the optimal profit level is π.

Of course, the affine-unit-elastic demand D1
π,c does not have surplus level s. Nonetheless,

by the intermediate value theorem, there exists η ∈ [0, π/(1 − c)] such that the affine-unit-

elastic demand Dη
π,c has surplus s, as depicted in Figure 2b.16 Furthermore, under the affine-

unit-elastic demand Dη
π,c, every price in the interval [π/η+ c, 1] is optimal for the monopolist

15Upgrade markets c > 1 are trivial since the highest possible value is always 1 for any market demand

D ∈ Ds and thus all of these market have no trade.
16To see this, notice that D1

π,c has surplus higher than s since it is pointwise above D ∈ Ds. Meanwhile,

notice that since the function c 7→ maxp(p − c)D(p) is convex and since maxp pD(p) ≤ s while maxp(p −
1)D(p) = 0, it must be that maxp(p− c)D(p) ≤ (1− c)s for all c ∈ [0, 1]. Thus, π/(1− c) ≤ s, which in turn

implies that G
π

1−c
π,c has surplus level π/(1 − c) ≤ s. Therefore, by the intermediate value theorem, since the

surplus level induced by Gη
′

π,c is continuous in η′, there exists η such that Gηπ,c induces surplus level s.
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in upgrade market c and yields profit π. Meanwhile, as shown by Roesler and Szentes

(2017) and demonstrated in Figure 2b, consumer surplus becomes higher under Dη
π,c.

17 As

a result, changing the demand from D to Dη
π,c increases consumer surplus while leaving the

monopolist’s profit unchanged in upgrade market c. As a result, in a fixed upgrade market

c, any efficient market demand must be payoff-equivalent to an affine unit elastic demand

Dη
π,c ∈ Ds, for some π, η.

Essentially, the argument above means that the monopolist’s iso-profit curves (and hence

the affine-unit-elastic demands) contain sufficient information to trace out the entire effi-

cient payoff frontier when conditioning on a particular upgrade market. Nevertheless, this

argument does not hold once we return to (4) from the relaxed problem. Specifically, since

both the monopoly profit and consumer surplus are mixtures of those in a continuum of

upgrade markets, and since the market demands are not allowed to be conditioned on in-

dividual upgrade markets, the collection of affine-unit-elastic demands cannot be regarded

as iso-profit curves of the monopolist. After all, the monopolist has to consider prices in

all upgrade markets at the same time.18 Therefore, Theorem 1 does not immediately follow

from characterizations of efficient market demands in each upgrade market. In fact, part of

the significance of Theorem 1 is exactly that affine-unit-elastic demands are still sufficient for

tracing out the efficient payoff frontier, even though they do not serve as the monopolist’s

iso-profit curves. The essence of the proof relies on a local perturbation argument, which we

will now explain.

The proof of Theorem 1 is based on the following claim: Given any s ∈ (0, 1) and any

regular γ ∈ Γ. If a market demand D ∈ Ds is not affine-unit-elastic, then we can always

perturb D and construct another market demand D̂ ∈ Ds such that Π(D̂|γ) ≈ Π(D|γ) and

Σ(D̂|γ) > Σ(D|γ). Together with the property that Π(·|γ) and Σ(·|γ) are continuous and

upper-semicontinuous, respectively (see Corollary 1 of Yang (2020)), it then follows that any

efficient market demand must be affine-unit-elastic.

Here we describe the perturbation. Consider any market demand D ∈ Ds. To begin with,

we first note that it is without loss to assume that D is constant on (0,pD(0)]. Indeed, if

not, then as Figure 3 shows, there exists η̂ ∈ [D(pD(0)), 1] such that for D̂ defined as

D̂(v) :=

{
Dη̂
π̂,0(v), if v ∈ [0,pD(0)]

D(v), if v ∈ (pD(0),∞)
,

D̂ ∈ Ds, where π̂ := pD(0)D(pD(0)). Under the market demand D̂, the monopolist’s optimal

17Although Figure 2b only demonstrates the case where η ≥ D(pD(c)), it can also be shown that consumer

surplus increases even when η < D(pD(c)), by using the fact that the monopolist’s profit remains as π and

that Dη
π,c ∈ Ds.

18In particular, under any affine-unit-elastic demand Dη
π,k, the monopolist’s (unique) optimal price equals

π/η + k in all upgrade markets c < k; and equals to 1 in all upgrade markets c > k.
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Figure 3: D̂ ∈ Ds is Constant on (0,pD(0)]

p

q

pD(0)

D(pD(0))

π̂

η̂

D

1

D̂

Dη̂
π̂,0

price in each upgrade market c > 0 remains the same, and hence the monopoly profit and

consumer surplus remain the same in each upgrade market c > 0. By regularity of γ (in

particular, that γ(0) = 0), it then follows that Π(D̂|γ) = Π(D|γ) and that Σ(D̂|γ) = Σ(D|γ).

That is, D and D̂ are payoff-equivalent. Henceforth, we assume that D is constant on

[0,pD(0)].

Since D is not affine-unit-elastic, there must be upgrade markets 0 < c1 < c2 in which

the monopolist has distinct optimal prices: pD(0) < pD(c1) < pD(c2). To highlight the main

insights and avoid unnecessary complications, we further assume that under this market

demand D, the monopolist’s optimal price is continuous and strictly increasing in upgrade

markets c.19 The perturbation of other types of market demands can be found in the ap-

pendix. For any such market demand D ∈ Ds, consider any two nearby upgrade markets

0 < c− ε < c. The iso-profit curves for the monopolist under her optimal prices in markets

c and c − ε are depicted in Figure 4a (labeled as D1
π,c and D1

πε,c−ε, respectively). Since the

iso-profit curves under optimal prices are always above the market demand, it must be that

min{D1
π,c(v), D1

πε,c−ε(v)} ≥ D(v) for all v ∈ [pD(c − ε),pD(c)]. Therefore, for each ε > 0,

there exists vε ∈ [pD(0),pD(c− ε)] such that for Dε defined as

Dε(v) :=


1, if v = 0

D(vε), if v ∈ (0, vε]

min{D1
π,c(v), D1

π̂,ĉ(v)}, if v ∈ (pD(c),pD(ĉ)]

D(v), otherwise

,

Dε ∈ Ds. The perturbed demand Dε is depicted in Figure 4b.

19This is equivalent to saying that the right-limit of 1−D, which is a CDF, is regular in the Myersonian

sense, which in turn is equivalent to saying that the marginal revenue curve induced byD is strictly decreasing.
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Figure 4: Local Perturbation
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Clearly, {Dε} → D as ε → 0 (under the L1-norm) since pD is continuous. Furthermore,

for any α, β ≥ 0, let

∆(ε) := α[Π(Dε|γ)− Π(D|γ)] + β[Σ(Dε|γ)− Σ(D|γ)]

denote the welfare gain when moving from D to Dε. By construction, limε↓0 ∆(ε) = ∆(0) = 0,

and hence it suffices to show that ∆′(0) > 0. In fact, this can be seen from Figure 4b. For

any ε > 0, the monopolist’s optimal price equals to vε in all upgrade markets c′ ∈ [0,p−1
D (vε)];

equals to a price between [pD(c− ε),pD(c)] in upgrade markets c′ ∈ [c− ε, c]; and equals to

pD(c′) in all other upgrade markets c′. Therefore, the monopolist’s profit remain unchanged

in every upgrade market c′ /∈ [c − ε, c] ∪ [0,p−1
D (vε)]. Meanwhile, the consumer surplus

decreases by an amount that is at most the area of the shaded rectangle in Figure 4b in

upgrade markets c ∈ [0,p−1
D (vε)]; and increases by the area of the shaded region below

min{D1
π,c, D

1
πε,c−ε} and above D in every upgrade markets c′ ∈ (p−1

D (vε), c − ε]. Therefore,

as ε → 0 (and hence p−1
D (vε) → 0), the change in monopolist’s profit, as well as the loss in

consumer surplus vanish in a faster order than that of the gain in consumer surplus, since

the upgrade markets in which consumer surplus increases has positive weight under γ (i.e.

γ(c) > 0) in the limit, whereas the weight of upgrade markets in which consumer surplus

decreases and monopolist’s profit changes converges to zero. This implies that ∆′(0) > 0.

We conclude this section by a numerical example. Suppose that s = 1/2, γ(c) = c for

all 0 ≤ c ≤ c̄ = 1. By Theorem 1, characterizing efficient market demands is equivalent to

finding affine-unit-elastic demands Dη
π,k with surplus level 1/2 to maximize

αΠ(Dη
π,k|γ) + βΣ(Dη

π,k|γ)
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Figure 5: Efficient Payoff Frontier
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for all α, β ≥ 0 with α + β > 0. According to (2) and (3), this is equivalent to

max
π,k,η

α

[∫ k

0

[π + (k − c)η] dc+

∫ 1

k

π

1− k
(1− c) dc

]
+ β

[
k

(
1

2
− π − ηk

)]
s.t.

∫ 1

0

Dη
π,k(v) dv = π + ηk + π log

(
(1− k)η

π

)
=

1

2
,

π

η
+ k ≤ 1.

Table 1 below summarizes the solution for the case of α = 0 and compares it with the

solutions conditional on upgrade markets c = 0 and c = 1/2 (see the online appendix of

Roesler and Szentes (2017)). Figure 5 further plots the entire efficient payoff frontier.

Table 1: Comparing Consumer-Optimal Demands

c = 0 c = 1
2

Multi-Product

π ≈ 0.19 ≈ 0.08 ≈ 0.09

k 0 0.5 ≈ 0.44

η 1 ≈ 0.61 ≈ 0.63

Surplus ≈ 0.31 ≈ 0.12 ≈ 0.06

5 Implications on Welfare and Allocation

In this section, we discuss some further implications of Theorem 1. As mentioned above, the

significance of Theorem 1 is that characterizing the efficient frontier can be reduced to to a
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finite dimensional problem, which in turn allows for further comparative statics and welfare

analyses, as well as characterizations of market outcomes.

5.1 (Almost) Inevitable Deadweight Loss

One of the most salient features of a monopoly market is that it is inefficient. As the

monopolist would always charge a mark-up, deadweight loss is an ubiquitous concept in

the theory of monopoly. However, a surprising result of Roesler and Szentes (2017) is that

when the monopolist sells a single product at a constant marginal cost, the deadweight loss is

always zero under any efficient demand (among those with the same surplus level, see Section

3 of their Online Appendix). The characterization of Theorem 1 allows us to explore the

same question in the context of multi-product monopoly. As shown in Proposition 1 below,

the same conclusion does not hold in a multi-product monopoly. There is (almost) always a

positive amount deadweight loss in a multi-product monopoly even under the efficient market

demands. To formalize the claim, we define, for any market demand D and for any regular

technology γ ∈ Γ, the amount of deadweight loss as follows:

L(D, γ) :=

∫ c̄

0

[∫ 1

c

D(v) dv − (pD(c)− c)D(pD(c))−
∫ 1

pD(c)

D(v) dv

]
γ(dc).

That is, the amount of deadweight loss under market demand D and technology γ is the

mixture of deadweight losses in each upgrade market c. Clearly, L(D, γ) ≥ 0. With this

notation, we can formally state the following result:

Proposition 1. Consider any surplus level s ∈ (0, 1) and any regular technology γ ∈ Γ. For

any (s, γ)-efficient market demand D, L(D, γ) = 0 if and only if D(v) = s for all v ∈ (0, 1].

Proof. By Theorem 1, any (s, γ)-efficient demands D must be affine-unit-elastic. Therefore,

L(D, γ) =

∫ c̄

0

∫ 1

c

Dη
π,k(v) dv − (pDηπ,k(c)− c)D(pDηπ,k(c))−

∫ 1

p
D
η
π,k

(c)

Dη
π,k(v) dv

 γ(dc)

=

∫ k

0

[s− cη − π − (s− π − cη)] γ(dc) +

∫ π
η

+k

k

[s− cη − π

1− k
(1− c)]γ(dc)

+

∫ c̄

π
η

+k

[∫
π
η

+k

π

v − k
dv − π

1− k
(1− c)

]
γ(dc)

≥0,

for some π, η, k such that Dη
π,k ∈ Ds and that π/η+ k ≤ 1, with equality if and only if π = 0,

η = s and k = 1. This completes the proof. �
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The essence of Proposition 1 is closely related to the comparison between Roesler and

Szentes (2017) and this paper. As discussed in Section 4, when market demands are allowed to

be conditioned on each upgrade market, the affine-unit-elastic demands coincide with the iso-

profit curves of the monopolist in that market. As a result, one can always hold the monopoly

profit and total surplus level fixed while reducing the amount of deadweight loss if the market

demand is not affine-unit-elastic. This argument is not valid when market demands cannot

be conditioned on upgrade markets. As a result, even if efficient market demands are still

affine-unit-elastic, there would still be deadwieght losses in almost all upgrade markets since

a given affine-unit-elastic demand only corresponds to an iso-profit curve of the monopolist

in one upgrade market. The only exception is when the market demand is constant on (0, 1)

(i.e., when the consumers’ values are concentrated at 0 or 1), in this case the monopolist’s

optimal price equals to 1 in every upgrade market and the consumer surplus is completely

extracted.

Consequently, Proposition 1 can be viewed as “bringing back” deadweight losses to mo-

nopolistic markets. According to Proposition 1, in a multi-product monopoly, deadweight

losses are inevitable even under the efficient market demands, in contrast to a single product

monopoly with constant marginal cost as in Roesler and Szentes (2017).

5.2 The Effect of Production Technology

As motivated in the introduction, it is crucial to understand the effect of production tech-

nologies on market outcomes, in addition to the effects of market demands. Just as market

demands, production technologies are also infinite dimensional. Nevertheless, since Theo-

rem 1 reduces the efficient market demands to a finite-dimensional family, it makes compar-

ative statics of production technologies tractable. We first consider the effects of changes in

technology on consumer surplus.

As an immediate corollary of Theorem 1 and (2), characterizing the market demand

D ∈ Ds that maximizes consumer surplus is equivalent to the following (finite dimensional)

constraint optimization problem:

max
π,k,η

γ(k)(s− π − ηk)

s.t. π + ηk + π log

(
(1− k)η

π

)
= s,

π

η
+ k ≤ 1,

which in turn, by letting

ω(k) := min
π,η

[π + ηk]

s.t. π + ηk + π log

(
(1− k)η

π

)
= s,

π

η
+ k ≤ 1,
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for all k ∈ [0, 1], can be written as

max
k∈[0,1]

γ(k)(s− ω(k)). (5)

Furthermore, it is straightforward to show that ω is continuous on [0, 1], differentiable on

(0, 1) and strictly increasing on [0, 1] with ω(1) = s. As a result, an equivalent way to write

(5) is

max
p∈[ω(0),s]

γ ◦ ω−1(p)(s− p). (6)

Thus, (6) suggests that maximizing buyer’s surplus is in fact equivalent to maximizing a

monopsonist’s surplus whose value of the good is s and is facing a supply function γ◦ω−1. This

observation, together with the insight of Johnson and Myatt (2006b), yields an unambiguous

comparative statics result. More specifically, consider a family of regular technologies {γλ|λ ∈
[0, 1]} ⊆ Γ such that ∂γλ(c)/λ exists for all λ ∈ [0, 1] and for all c ≥ 0. Define an ordering

on {γλ|λ ∈ [0, 1]} as the following.

Definition 2. A family {γλ|λ ∈ [0, 1]} ⊆ Γ is said to be ranked by the rotational order if

there exists {cλ|λ ∈ [0, 1]} ⊆ [0, 1] such that cλ is nondecreasing in λ and that

∂γλ(c)

∂λ
≤ 0 if c < cλ, and

∂γλ(c)

∂λ
≥ 0 if c > cλ, ∀λ ∈ [0, 1].

Motivated by the analyses of Johnson and Myatt (2006b), as a corollary of Theorem 1,

the following comparative statics can then be derived.

Proposition 2. For any family of regular technologies {γλ|λ ∈ [0, 1]} ⊆ Γ ranked by the

rotational order, the consumer-optimal surplus is quasi-convex in λ.

Proof. By Theorem 1 and (5), for any λ ∈ [0, 1],

sup
D∈Ds

Σ(D|γλ) = max
k∈[0,1]

γλ(k)(s− ω(k)),

Furthermore, since {γλ|λ ∈ [0, 1]} is ranked by the rotational order, for any k ≥ 0, the

function λ 7→ γλ(k)(s − ω(k)) is quasi-convex. Therefore, as a function of λ, the consumer-

optimal surplus is quasi-convex in λ since it is a pointwise supremum of a family of quasi-

convex functions. This completes the proof. �

Proposition 2 means that for any family of technologies {γλ|λ ∈ [0, 1]} ⊆ Γ ranked by

the rotational order, the consumer-optimal surplus as a function of the parameter λ is either

increasing, decreasing, or U-shaped. A crucial implication is that consumer-optimal surplus

is nonmonotonic in cost function in general. Specifically, recall that a regular technology

γ ∈ Γ is uniquely associated with a strictly convex cost function C with C(0) = 0 through
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(1). Thus, if γ0 is associated with C0 and γ1 is associated with C1, then γ0 second order

stochastically dominates γ1 if and only if C1 ≤ C0 pointwise.20 Therefore, for a family

of technologies {γλ|λ ∈ [0, 1]} ranked by second order stochastic dominance that are also

consistent with the rotational order, it is possible that consumer surplus would be higher

under a larger cost function (lower λ) then under a smaller cost function (higher λ). In fact,

quasi-convexity implies that consumer surplus must the highest under either the largest cost

function or the smallest cost function.

In fact, the nonmonotonicity property is not specific to only consumer-optimal surplus.

As Proposition 3 below shows, (almost) all the optimal weighted sum of monopoly profit and

consumer surplus could be nonmonotonic in cost function. To formalize this claim, let

Wα,β(s, γ) := sup
D∈Ds

[αΠ(D|γ) + βΣ(D|γ)],

for any surplus level s ∈ (0, 1), any technology γ ∈ Γ and for any weights α, β ≥ 0 with

α + β > 0.

Proposition 3. For any surplus level s ∈ (0, 1), for any regular technology γ ∈ Γ, and for

any weights α ≥ 0, β > 0, there exists a regular technology γ̃ which second order stochastically

dominates γ such that Wα,β(s, γ) > Wα,β(s, γ̃).

Proof. See appendix. �

Proposition 3 essentially means that, for any surplus level s ∈ (0, 1) and any regular

technology γ ∈ Γ, there exists another (nearby) technology under which the efficient frontier

shifts “inward”, even though the cost of producing every quality level decreases.21 This

suggests that reduction of cost may not always enhance efficiency. In fact, there might even

be cases where reduction of cost leads to efficiency loss.

5.3 Market Outcomes under Efficient Demands

In addition to the monopoly profit and consumer surplus, we may also examine the allocative

outcomes of the market. That is, the distribution of products across consumers. In general,

20By Theorem 3.8 of Sriboonchita et al. (2009),∫ k

0

γ1(c) dc ≥
∫ k

0

γ0(c) dc, ∀k ≥ 0 ⇐⇒ C0(q) =

∫ q

0

C ′0(x) dx ≤
∫ q

0

C ′1(x) dx = C1(q), ∀q ∈ [0, 1].

21It is noteworthy that Proposition 3 does not imply that for any payoff pair on the efficient frontier, there

exists another technology such that an outcome under this new technology Pareto-dominates the original

one. Instead, it only implies there exits an other technology that exhibits higher costs and yet the original

payoff pair falls below the frontier locally.
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allocative outcomes in a multi-product monopoly with quality-differentiated products could

be quite complex, especially when the monopolist can produce a continuum of different quality

levels. After all, as shown by Mussa and Rosen (1978), this is often a nontrival nonlinear

pricing problem. Alternatively, using the language of Johnson and Myatt (2003), Johnson

and Myatt (2006a) and Johnson and Myatt (2006b) (and hence that of this paper), the

monopolist’s optimal price (and hence the share of purchasing consumers) could be different

in every upgrade market c. While the continuum-quality model has the benefit of being

tractable, the complexity of its implied market outcomes are sometimes less desirable from

both a theoretical and an empirical point of view.

However, it turns out that under any efficient market demand, the allocative outcome is

actually quite simple, as shown by Proposition 4 below.

Proposition 4. For any surplus level s ∈ (0, 1) and for any regular technology γ ∈ Γ, under

any (s, γ)-efficient market demand, only two quality levels are sold. That is, there exists

k ∈ [0, 1] such that the monopolist optimally bundles upgrades c ∈ [0, k] and c ∈ (k, 1], and

then sells these bundles at two prices.

Proof. By Theorem 1, any (s, γ)-efficient market demand must equal to some affine-unit-

elastic demand Dη
π,k ∈ Ds. Moreover, under Dη

π,k, the monopolist’s (lowest) optimal price

equals to π/η + k in all upgrade markets c ∈ [0, k], and equals to 1 in all upgrade markets

c ∈ (k, 1]. This completes the proof. �

According to Proposition 4, although allocative outcomes in a multi-product monopoly are

generally complex, they are rather simple on the efficient frontier. Under any efficient market

demand, the monopolist only sells two bundles of upgrades, one “basic” level (i.e., c ∈ [0, k])

and the other “advanced level” (i.e., c ∈ (k, 1]). Even though the technology allows the

monopolist to produce a continuum of quality-differentiated products, the monopolist would

end up selling only two different products under any efficient market demand. Another way

to view this result is that complexity of the allocative outcome and efficiency are unrelated.

Observing simple allocative outcome does not necessarily mean that the market demand is

less efficient. Conversely, a market with a complex allocative outcome is in fact inefficient.

6 Discussions

6.1 Interpretations of the Model

Throughout the paper, we interpret the model as a nonlinear pricing problem where a multi-

product monopoly sells quality-differentiated products to a unit mass of consumers, and

characterize the efficient market demands among those that have the same surplus level.

From the perspective of Johnson and Myatt (2003), Johnson and Myatt (2006a), and Johnson
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and Myatt (2006b) we transform this problem into a continuum of single-product monopoly

pricing problems with constant marginal costs, where each marginal cost level represents

an upgrade market. Mathematically, this “upgrade approach” is in turn equivalent to a

model where the monopolist’s marginal cost is uncertain. Therefore, Theorem 1 above can

be regarded as a characterization of the ex-ante efficient demands among those with the

same surplus level; Proposition 2 and Proposition 3 can be regarded as nonmonotonicity of

consumer surplus and welfare when the monopolist’s cost becomes more uncertain (in the

sense of mean-preserving spread); and Proposition 4 can be viewed from the perspective of

ex-post allocation under efficient market demands.

Meanwhile, although we interpret the demand functions as the distribution over con-

sumers values and search for the efficient demands among those with the same surplus level,

as hinted by the comparison with Roesler and Szentes (2017) above, the model is equivalent

to the setting where there is one buyer with binary value v ∈ {0, 1} that is distributed ac-

cording to (1 − s, s) and can receive different signals (i.e., Blackwell experiments) for this

value. Under this interpretation, a demand function D ∈ Ds can be regarded as a posterior

distribution of value that is a mean-preserving contraction of the prior (1−s, s), and hence a

Blackwell experiment. Therefore, Theorem 1 can also be interpreted as the characterization

of efficient signals. From this perspective, Theorem 1 also leads to a characterization of bid-

ders’ best response in an auction game where bidders choose signals simultaneously before

the seller designs an optimal auction. In an earlier version of this paper, we completely char-

acterize the unique symmetric equilibrium of the game using Theorem 1, where each bidder

randomizes over signals that induce posteriors of form Dη
π,k.

6.2 More Restrictive Set of Demands

When characterizing the efficient market demands, we search across all market demands

with the same surplus level. While allowing for all such demand functions render an infinite

dimensional problem, the richness of this set also brings tractability. Specifically, when

constructing a local perturbation of any non-affine-unit-elastic demands, the only constraint

the perturbed demand has to satisfy is that it must have the same surplus level as the original

one. This is a crucial reason for why we are able to obtain a complete characterization.

Of course, a natural extension would be to impose more restrictions on the set of market

demands that are allowed. One example would be to impose a mean-preserving constraint

so that any feasible demand must be a mean-preserving contraction of a given demand D0.22

For instance, there could be some exogenous limits on how spread out the distribution of

consumers values could be, such as underlying preferences, income distribution, or a common

prior that has non-binary support.

22When D0(v) = s for all v ∈ (0, 1], this restriction reduces to the surplus level constraint above.
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With an arbitrary upper bound under the mean preserving spread order, characterizing

efficient market demands becomes much more difficult. After all, the maximization problem

(4) has only one constraint when searching across all demands with the same surplus level. In

contrast, there would be a continuum of constraints when searching across all demands that

are mean preserving contractions of some arbitrary demand. In particular, for arbitrary D0,

the local perturbation constructed in Section 4 would not be a mean preserving contraction

of D0 in general, even if it has the same surplus level as D0. Nonetheless, using similar local

perturbation arguments, the consumer-optimal demand can be shown to exhibit the following

feature: There exists an increasing sequence {vn} that forms a partition of [0, 1], such that

in the interior of each element of this partition, (vn, vn+1), the demand is affine-unit-elastic,

while the mean preserving spread constraint binds at vn and vn+1.23 Nonetheless, the class

of demands of this form could still be infinite dimensional (as the sequence {vn} might be

countably infinite), and hence complete characterization remains an open question.

6.3 Policy Implications

The results about the effect of market demands and production technologies on market out-

comes further lead to some policy implications. From the demand side, Theorem 1, Propo-

sition 1, and Proposition 4 provide some insight about demand manipulation. As motivated

in Section 1, and as demonstrated by Johnson and Myatt (2006b), plenty of economic ac-

tivities can affect the shape of market demands (e.g.,product design, information disclosure,

income redistribution, or marketing strategies). Therefore, for a “demand designer” (e.g.,

monopolist, regulator, or consumers) who can affect market demands through these activities,

Theorem 1 prescribes the exact shape for a market demand to be efficient. Furthermore, from

a policymaker’s point of view, Proposition 4 implies that if the observed allocative outcome

is more complicated than a simple two-products market, then the market can certainly be

Pareto-improved via (proper) demand manipulations. Nevertheless, Proposition 1 indicates

that even the efficient market demands are not able to eliminate deadweight loss, and hence

other types of intervention must be needed if a policymaker’s goal is to eliminate deadweight

loss.

On the technology side, Proposition 2 and Proposition 3 indicate that in terms of efficiency

(and consumer surplus in particular), the level of the monopolist’s cost alone is not indicative.

Instead, it is the curvature of the technology γ that has crucial implications. Indeed, both the

optimal consumer surplus and the optimal weighed sum of monopoly profit and consumer

23 This is reminiscent of the monotone partition structure in the literature, see, for instance Kolotilin, Li,

Mylovanov, and Zapechelnyuk (2017), Dworczak and Martini (2019), and Kleiner, Moldovanu, and Strack

(forthcoming)), except that when the mean preserving constraint does not bind, the demand is affine-unit-

elastic as opposed to being constant almost everywhere)
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surplus are nonmonotonic in the level of cost function. As a result, from a policymaker’s

perspective, advancement of technology in the sense of reduction of cost may not necessarily

be desirable in a multi-product monopoly. This observation could provide insights for patent

regulation and vertical integration.

7 Conclusion

In this paper, we characterize the efficient market demands with a fixed surplus level in

a multi-product monopoly where the monopolist sells a continuum of quality-differentiated

products. By the insight of Johnson and Myatt (2003), Johnson and Myatt (2006a) and

Johnson and Myatt (2006b), we transform the monopolist’s problem into a continuum of

single-product pricing problem across different upgrade markets, where the monopolist has

different (constant) marginal costs in each upgrade market. We then use a local perturba-

tion argument to show that any efficient market demand must be affine-unit-elastic. This

characterization has several implications. First, it reduces the problem of finding the efficient

demands to a finite dimensional problem, even though the set of demand functions with the

same surplus level is infinite-dimensional. Secondly, it implies that under (almost) every

efficient demand, there is still a positive amount of deadweightloss, in contrast to those in

a single-product monopoly where deadweight loss is always zero. Furthermore, the char-

acterization of efficient market demands implies that only two different products are sold

under any efficient market demand. That is, under any efficient demand, the monopolist

sells the “upgrades” in only two bundles. Lastly, using this characterization, we are also

able to examine how changes in the production technology affect market outcomes. We show

that the optimal weighed sum of consumer surplus and monopoly profit is non-monotonic in

production cost.

Although the market demands can be shaped by numerous economic activities as mo-

tivated in Section 1, allowing for all the demands with the same surplus level certainly

abstracts away the fine details of how these demands are formed, as well as the practical

limitations when forming different demands. A natural extension is to characterize the set

of efficient demands among those that satisfy more complicated constraints. One example

is the upper bound in terms of mean preserving spread discussed in Section 6. Other ex-

amples include lower bound in terms of mean preserving contraction (e.g., intrinsic noises

in consumers’ tastes); upper/lower bounds in terms of first-order stochastic dominance (e.g.,

designing product upgrades that can only increase consumers’ values); and restrictions on

higher-order moments. These can be topics for future research.

Lastly, the methodology developed in this paper is related to a robust pricing problem in

a multi-product monopoly, where the monopolist sells a continuum of quality-differentiated

products at increasing marginal costs, but does not have any knowledge about the market
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demand, except the total surplus level. In a single-product monopoly, this would correspond

to the model of Carrasco et al. (2018) with only the first moment constraint. The local

perturbation method appears to be useful for solving the monopolist’s min-max problem,

which can be useful in identifying the max-min solution. This can also be a topic for future

research.
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Appendix

A Proof of Theorem 1

To prove Theorem 1, we first note a close connection between the monopolist’s optimal prices in each

upgrade market and the shape of demand.

Lemma 1. A market demand D is affine-unit-elastic if and only if the function pD : [0, 1]→ R+ is a step

function and D(v) = D(pD(0)) for all v ∈ (0,pD(0)]

Proof. The “only if” part follows immediately from the definition of affine-unit-elastic demands. For the “if”

part, since pD(1) = 1, it must be that pD(c) = pD(0) for all c < c∗ and that pD(c) = 1 for all c > c∗, for some

c∗ ∈ [0, 1]. By Proposition 6 of Yang (2020), pD is lower-semicontinuous and thus pD(c∗) = v. Furthermore,

max(argmaxv(v−c∗)D(v)) = 1 since the optimal price correspondence is upper-hemicontinuous by the same

proposition. Therefore, for all v ∈ [pD(0), 1],

(v − c∗)D(v) = π ⇐⇒ D(v) =
π

v − c∗
.

for some π ≥ 0. Together with D(v) = D(pD(0)) for all v ∈ (0,pD(0)], we have D(v) = D
D(pD(0))
π,c∗ , as

desired. �

Proof of Theorem 1. First, notice that by Corollary 1 of Yang (2020), for any γ ∈ Γ, Π(·|γ) is continuous on

Ds and Σ(·|γ) is upper-semicontinuous on Ds. Therefore, since Ds is compact under the weak-* topology,

(4) has a solution. Thus, it suffices to show that for any s ∈ (0, 1), for any regular γ ∈ Γ, for any weights

α ≥ 0,β ≥ 0 with (α, β) 6= (0, 0), and for any D ∈ Ds that is not affine-unit-elastic, there exists D̂ ∈ Ds
such that αΠ(D̂|γ)βΣ(D̂|γ) > αΠ(D|γ) + βΣ(D̂|γ).

In the case of β = 0, notice that for any s ∈ (0, 1), for any regular γ ∈ Γ, and for any D ∈ Ds,

(pD(c)− c)D(pD(c)) +

∫ 1

pD(c)
D(v) dv ≤

∫ 1

c
D(v) dv

≤ s(1− c),

for all c ∈ [0, 1], where the last inequality follows from that fact that any D ∈ Ds is a mean preserving

contraction of the demand Ds
0,1 (notice that Ds

0,1(v) = s for all v ∈ (0, 1)). Moreover, the equality holds if

and only if D(v) = s for all v ∈ (0, 1). As a result,

Π(D|γ) < Π(Ds
0,1|γ) =

∫ c̄

0
s(1− c)+γ(dc),

as desired.

Now consider the case when β > 0. We show that for any D ∈ Ds that is not affine-unit-elastic, there

exists a sequence of local perturbation {Dε} ⊆ Ds of D such that ∂
∂εΠ(Dε|γ) = 0 and that ∂

∂εΣ(Dε|γ) > 0.

Since β > 0, this would then immediately implies that, there exists D̂ ∈ Ds such that αΠ(D̂|γ)+βΣ(D̂|γ) >

αΠ(D/γ) + βΣ(D|γ).
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To this end, consider any D ∈ Ds that is not affine-unit-elastic. Notice that since D ∈ Ds,∫ 1

pD(0)
D(v) dv + pD(0)D(pD(0)) ≤ s.

We first claim that it is without loss to assume that either D(pD(0)) = 1 or∫ 1

pD(0)
D(v) dv + pD(0)D(pD(0)) ≤ s

Indeed, suppose that D(pD(0)) < 1 and that∫ 1

pD(0)
D(v) dv + pD(0)D(pD(0)) < s. (7)

Let π0 := pD(0)D(pD(0)). Notice that

vD(v) ≤ pD(0)D(pD(0)) = π0 ⇐⇒ D(v) ≤ π0

v
(8)

for all v ∈ (0, 1]. Since

pD(0)D(pD(0)) +

∫ 1

pD(0)
D(v) dv < s,

it must be that ∫ pD(0)

0
D(v) dv +

∫ pD(0)

0
D(pD(0)) dv =

∫ pD(0)

0
D(v) dv − π0 > 0. (9)

Combining (8) and (9), by the intermediate value theorem, there exists v̂ ∈ (0,pD(0)) such that∫ v̂

0

π0

v̂
dv +

∫ pD(0)

v̂

π0

v
dv =

∫ pD(0)

0
D(v) dv,

where

D̂(v) :=


1, if v = 0
π0
v̂ , if v ∈ (0, v̂]
π0
v , if v ∈ (v̂,pD(0)]

D(v), if v ∈ (pD(0),∞)

.

Therefore, we have D̂ ∈ Ds, Moreover, since π0 ≥ vD(v) for all v ∈ [0, 1], we must have maxv vD̂(v) = π0

and that p
D̂

(0) = v̂. This in turn implies that∫ 1

p
D̂

(0)
D̂(v) dv =

∫ 1

v̂
D(v) dv =s−

∫ v̂

0
D̂(v) dv

=s− π0

=s−D(pD(0))

>

∫ 1

pD(0)
D(v) dv.

Furthermore, for all c > 0, since v 7→ (v − c)π0/v is increasing,

(v − c)D̂(v) ≤ (pD(0)− c) π0

pD(0)
= (pD(0)− c)D(pD(0)) ≤ (pD(c)− c)D(pD(c)),
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where the last inequality holds if and only if pD(0) < pD(c). As a result, pD(c) = p
D̂

(c) for all c ≥ 0.

Together, we have Π(D̂|γ) ≥ Π(D|γ) and Σ(D̂|γ) ≥ Σ(D|γ) and∫ 1

p
D̂

(0)
D(v) dv + p

D̂
(0)D̂(p

D̂
(0)) = s.

Thus, by showing that there exists D̂ ∈ Ds such that αΠ(D̂|γ) + βΣ(D̂|γ) > αΠ(D/γ) + βΣ(D|γ) for any

non affine-unit-elastic D with

pD(0)D(pD(0)) +

∫ 1

pD(0)
D(v) dv = s,

it then immediately follows that αΠ(D̂|γ) + βΣ(D̂|γ) > αΠ(D/γ) + βΣ(D|γ) for all D with D(pD(0)) < 1

and

pD(0)D(pD(0)) +

∫ 1

pD(0)
D(v) dv < s

as well.

For notational convenience, we now transform the coordinates to write integrals in the value space.

Specifically, notice that

Σ(D|γ) =

∫ c̄

0

(∫ 1

pD(c)
D(v) dv

)
γ(dc) =

∫ 1

0
γ(p−1

D (v))D(v) dv

for any market demand D and for any γ ∈ Γ, where

p−1
D (v) := inf{c ≥ 0|pD(c) ≥ v}.

Now consider two cases separately.

Case 1:

pD(0)D(pD(0)) +

∫ 1

pD(0)
D(v) dv = s. (10)

In this case, since D ∈ Ds, ∫ pD(0)

0
(D(v)−D(pD(0))) dv = 0.

Since D is nondecreasing, it must be that D(v) = D(pD(0)) for all v ∈ (0,pD(0)]. By Lemma 1, pD takes

at least three different values on [0, 1], which is equivalent to saying that p−1
D takes at least three values on

[0, 1].

Suppose first that there exists some v0 ∈ (0, 1) and a sequence {vn} such that vn < vn+1 < c0 and

p−1
D (vn) < p−1

D (vn+1) < pD(v0) for all n ∈ N and that {vn} ↑ v0. Since p−1
D (vn+1) > p−1

D (vn) for all n ∈ N
and p−1

D is nondecreasing, we may take such {vn} so that p−1
D (v+

n ) > p−1
D (v′) for all v ∈ [pD(0), vn) for all

n ∈ N. Let k := p−1
D (v0) and ζ0 := (v0− k)D(v0). Moreover, for each n ∈ N, let ζn := (vn−p−1

D (v+
n ))D(vn).

Since p−1
D (v+

n ) > p−1
D (v′) for all v′ ∈ [pD(0), vn) and since p−1

D (vn+1) > p−1
D (vn), we must have

(v − p−1
D (vn))D(v) ≤ (vn − p−1

D (vn))D(vn),

and

(v − k)D(v) ≤ (v0 − k)D(v0),
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for all v ∈ [vn, v0], with strict inequality at some v ∈ (vn, v0). Thus,

D(v) ≤ min

{
ζ0

v − k
,

ζn

v − p−1
D (vn)

}
, (11)

for all v ∈ [vn, v0] with strict inequality at some v ∈ (vn, v0). Thus, there exists n̄ ∈ N such that whenever

n > n̄, there exists vn ∈ (pD(0), vn) and v̂n ∈ (vn, v0) such that∫ v0

0
D(v) dv = vnD(vn) +

∫ vn

vn

D(v) dv +

∫ v0

vn

min

{
ζ0

v − k
,

ζn

x− p−1
D (vn)

}
dv (12)

ζ0

v̂n − k
=

ζn

v̂n − p−1
D (vn)

. (13)

As such, for any n > n̄, define

D̂vn(v) :=



D(v), if v ∈ [v0, 1]
ζ0
v−k , if v ∈ [v̂n, v0)
ζn

v−p−1
D (vn)

, if v ∈ [vn, v̂n)

D(v), if v ∈ [vn, vn)

D(vn), if v ∈ [0, vn)

,

where v̂n and vn are uniquely defined by (12) and (13). Notice that by (11), v̂n < v̂n+1 for all n ∈ N,

{v̂n} ↑ v0 and vn > vn+1 for all n ∈ N, {vn} ↓ r. Moreover, D̂vn ∈ Ds for all n ∈ N.

By construction, for all v ∈ [0, 1] and for any n > n̄,

p−1
Dvn (v) =



p−1
D (v), if v ∈ [v0, 1]

k, if v ∈ [v̂n, v0)

p−1
D (vn), if v ∈ [vn, v̂n)

p−1
D (v), if v ∈ [vn, vn)

0, if v ∈ [0, vn)

.

As a result, the difference in consumer surplus between under D̂vn and under D is∫ 1

0
γ(p−1

D̂xn
(v))D̂vn(v) dv −

∫ 1

0
γ(p−1

D (v)D(v) dv

=γ(k)(pD(0)D(pD(0))− vnD(vn)) +

∫ vn

pD(0)
(γ(k)− γ(p−1

D (v)))D(v)) dv

−
∫ v̂n

vn

(
(γ(k)− γ(p−1

D (vn)))D̂vn(v)
)

dv

+

∫ v0

vn

(
γ(k)− γ(pD−1(v)))D(x)

)
dv.

Notice that by definition, pD(0)D(pD(0)) ≥ vnD(vn) for all n >∈ N.

For any v ∈ (pD(0), v0), let

∆(v) :=

∫ v

pD(0)

(
γ(k)− γ(p−1

D (v))
)
D(v) dv−

∫ v̂(v)

v̄(v)

(
γ(k)− γ(p−1

D (v̄(v))
)
D̂v(v) dv (14)

+

∫ v0

v̄(v)

(
γ(k)− γ(p−1

D (v))
)
D(v) dv,
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where v̂(v) and v̄(v) are uniquely defined by∫ v0

0
D(x) dv = vD(v) +

∫ v̄(v)

v
D(v) dv +

∫ v0

v̄(v)
min

{
ζ0

v − k
,

ζv̄(v)

v − p−1
D (v̄(v))

}
dv (15)

ζ0

v̂(v)− k
=

ζv̄(v)

v̂(v)− p−1
D (v̄(v))

, (16)

and D̂v is defined by

D̂v(v) :=



D(v), if v ∈ [v0, 1]
ζ0
v−k , if v ∈ [v̂(v), x0)
ζv̄(v)

v−p−1
D (v̄(v))

, if x ∈ [v̄(v), v̂(v))

D(v), if v ∈ [v, v̄(v))

D(v), if v ∈ [0, v)

,

where ζv := (v − p−1
D (v))D(v) for all v ∈ [pD(0), 1].

By (12), (13), (15) and (16), for any n > n̄, we have vn = v̄(vn) and v̂n = v̂(vn). Also, v̂ and v̄ are

decreasing in v and limv→pD(0) v̄(v) = limv→pD(0) v̂(v) = v0, limv→pD(0) p
−1
D (v̄(v)) = limn→∞ p−1

D (vn) = k.

Furthermore, since p−1
D and γ are nondecreasing, by (15) and (16), v̄ and v̂ are differentiable Lebesgue-

almost everywhere and therefore ∆ is differentiable Lebesgue-almost everywhere. Thus, for Lebesgue almost

all v,

∆′(v) = (γ(k)− γ(p−1
D (v)))D(v)− v̂′(v)(γ(k)− γ(p−1

D (v̄(v))))D̂v(v̂(v))

−
∫ v̂(v)

v̄(v)

∂

∂v
(γ(k)− γ(p−1

D (v̄(v))))D̂v(v) dv.

As limv→pD(0) v̂(v) = limv→pD(0) v̄(v) = v0, limv→pD(0) p
−1
D (v̄(v)) = k and since v̂ is decreasing, there

exists δ > 0 such that for v sufficiently close to pD(0), whenever ∆ is differentiable at v,

∆′(v) > (γ(k)− γ(p−1
D (v)))D(v)− δ > 0, (17)

where the second inequality follows from the hypothesis that γ is strictly increasing. Therefore, since ∆ is

continuous in v and ∆′(v) > 0 for v sufficiently close to pD(0), there exists v̂ such that ∆(v) > 0 for all

v ∈ (pD(0), v̂).

As such, for n sufficiently large so that vn ∈ (pD(0), v̂),

0 < ∆(vn) =

∫ vn

pD(0)
(γ(k)− γ(p−1

D (v)))D(v)) dv

−
∫ v̂n

vn

(
(γ(k)− γ(p−1

D (vn)))D̂vn(v)
)

dv

+

∫ v0

vn

(
γ(k)− γ(p−1

D (v)))D(v)
)

dv.

Together, for n sufficiently large,

Σ(D̂vn |γ) =

∫ 1

0
γ(p−1

D̂vn
(v))D̂vn(v) dv >

∫ 1

0
γ(p−1

D (v))D(v) dv = Σ(D|γ),
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as desired.

As for the monopolist’s profit, notice that for each n ∈ N, any c ∈ [0, 1]\(p−1
D (vn), k) ∪ (0,p−1

D (vn|R)),

maxp(p− c)D(p) = maxp(p− c)D̂vn . Therefore,

Π(D|γ)−Π(D̂vn |γ)

=

∫ p−1
D (vn)

0
[max
p

(p− c)D(p)−max
p

(p− c)D̂vn(p)]γ(dc) +

∫ k

p−1
D (vn)

[max
p

(p− c)D(p)−max
p

(p− c)D̂vn ]γ(dc)

Let

Λ(v) :=

∫ p−1
D (v)

0
[max
p

(p− c)D(p)−max
p

(p− c)D̂v(p)]γ(dc) +

∫ k

p−1
D (vn)

[max
p

(p− c)D(p)−max
p

(p− c)D̂v]γ(dc)

(18)

Notice that Λ(pD(0)) = 0. Furthermore, since p−1
D (v) → 0 and p−1

D (v̄(v)) → k as v → pD(0), and since

maxp pD(p) = maxp pD̂
v(p) and maxp(p− k)D(p) = maxp(p− k)D̂v(p) for all v, we have

Λ′(pD(0)) = γ′(0)(max
p
pD(p)−max

p
pD̂v(p)) + γ′(k)(max

p
(p− k)D(p)−max

p
(p− k)D̂v(p)) = 0. (19)

Together, for n ∈ N large enough,

αΠ(D|γ) + βΣ(D|γ) < αΠ(D̂vn |γ) + βΣ(D̂vn |γ),

as desired.

Secondly, consider the case where for any v ∈ (pD(0), 1) and for any sequence {vn} such that {vn} ↑ v,

there exists n̄ ∈ N such that p−1
D (vn) = p−1

D (v) for all n > n̄, then for any v ∈ (pD(0), 1), there exists δ > 0

such that p−1
D (v′|R) = p−1

D (v) for all v′ ∈ (v− δ, v). Let δv := sup{δ > 0|p−1
D (v′) = p−1

D (v), ∀v′ ∈ (v− δ, v)}.
Then δv > 0 for all v ∈ (pD(0), 1). Moreover, for any v, v′ ∈ (pD(0), 1), if p−1

D (v) 6= p−1
D (v′), then it must

be that (v − δv, v) ∩ (v′ − δv′ , v
′) = ∅. Therefore, {p−1

D (v)}v∈(pD(0),1) is at most countable. Since p−1
D is

nondecreasing, it must be a step function. Let v̄ := sup{v ∈ [0, 1]|D(v) > 0} and consider first the case

when for any δ > 0, there exists v, v′ ∈ (v̄ − δ, v̄) with v < v′; such that p−1
D (v) < p−1

D (v′) < p−1
D (v̄). Since

p−1
D is a step function, p−1

D has countably infinitely many jumps and therefore we may represent p−1
D as

p−1
D (v) =

∞∑
n=1

cn1{v ∈ (an, bn)}, ∀v ∈ [pD(0), 1]\[{an}∞n=1 ∪ {bn}∞n=1].

for some {an}, {bn} with an < bn for all n ∈ N and some {cn}∞n=1 with cn > 0 for all n ∈ N, n ≥ 2. Since

for any δ > 0, there exists v, v′ ∈ (v̄ − δ, v̄), v < v′, such that p−1
D (v) < p−1

D (v′) < p−1
D (v̄), there exists a

sequence {vj} such that vj ∈ {an}∞n=1∪{an}∞n=1, vj < vj+1, cj := p−1
D (v+

j ) = p−1
D (vj+1) < p−1

D (v+
j+1) =: vj+1

for all j ∈ N, and that {vj} ↑ v̄ and {cj} ↑ p−1
D (v̄).

Since p−1
D is a left-continuous step function and p−1

D (v) = v̄ for all v ∈ [b, 1], we must have p−1
D (v̄) < v̄

and D(v̄) > 0. As such, let ζ̄ := (v̄−p−1
D (v̄))D(v̄). Then ζ̄ > 0. Also, for each j ∈ N, let ζj := (vj−cj)D(vj).

Then, since ψj−1 < ψj < ψj+1, we have

(v − cj)D(v) < (vj − cj)D(vj), and (v − p−1
D (v̄))D(v̄) < (v̄ − p−1

D (v̄))D(v̄)
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for all v ∈ (vj , v̄), and hence

D(x) < min

{
ζ̄

x− p−1
D (v̄)

,
ζj

v − cj

}
,

for all v ∈ (vj , v̄).

As such, there exists a sequence {vj} such that {vj} ↓ pD(0) such that D̂j ∈ Ds for j large enough,

where D̂j is defined as:

D̂j(v) :=



D(v), if v ∈ [v̄, 1]
ζ̄

v−p−1
D (v̄)

, if v ∈ (v̂j , v̄]

ζj
v−ψj , if v ∈ (v̄j , v̂j ]

D(v), if x ∈ (vj , v̄j ]

D(vj), if v ∈ (0, vj ]

,

where vj < v̂j < v̄j < v̄ are uniquely defined by∫ 1

0
D̂j(v) dv =

∫ 1

0
D(v) dv

ζ̄

v̂j − p−1
D (v̄)

=
ζj

v̂j − cj
,

Similar to the previous case, for each j ∈ N such that D̂j ∈ Ds, the deviation gain from R to D̂j is

γ(p−1
D (v̄))(pD(0)D(pD(0))− vjD(vj)) +

∫ vj

pD(0)
(γ(p−1

D (v̄))− γ(p−1
D (v)))D(v) dv

−
∫ v̂j

v̄j

(
γ(p−1

D (v̄))− γ(cj)
)
D̂j(v) dv

+

∫ vj

v̄j

(
γ(p−1

D (v̄))− γ(p−1
D (v))

)
D(v) dv.

By definition, p−1
D (0)D(pD(0)) ≥ vjD(vj) for all j ∈ N. Also, as shown in the previous case, from (14)

and (17), with v0 = b and k = p−1
D (v̄), there exists δ > 0 such that for v sufficiently close to pD(0),

∆′(v) > (γ(k) − p−1
D (0+))D(pD(0)+) − δ > 0 since cj > 0 for all j ∈ N and γ is strictly increasing. Thus,

since by (15) and (16), v̂j = v̂(vj) and v̄j = v̄(vj), and since {vj} ↓ pD(0), for j sufficiently large,

0 < ∆(vj) =

∫ vj

pD(0)
(γ(p−1

D (v̄))− γ(p−1
D (v))D(v) dv

−
∫ v̂j

v̄j

(
γ(p−1

D (v̄))− γ(cj)
)
D̂j(v) dv

+

∫ vj

v̄j

(
γ(p−1

D (v̄))− γ(p−1
D (v))

)
D(v) dv.

Together, for j large enough, D̂j ∈ Ds and

Σ(D̂j |γ) =

∫ 1

0
γ(p−1

D̂j
(v))D̂j(v)) dv >

∫ 1

0
γ(p−1

D (v))D(v) dv.

In the mean time, the difference in monopolist’s profit between D and D̂j is∫ 1

0
max
p

(p− c)D(p)γ(dc)−
∫ 1

0
max
p

(p− c)D̂j(p)γ(dc).
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Similar to the previous case, for all j ∈ N, maxp(p−c)D(p) = maxp(p−c)D̂j(p) for all c ∈ [0, 1]\(cj ,p−1
D (v̄))∪

(0,p−1
D (vj)). Thus, by (18) and (19), Λ′(pD(0)) = 0 implies that the first order difference of the monopolist’s

profit is zero. Together, there exists D̂j ∈ Ds such that

αΠ(D̂j |γ) + βΣ(D̂j |γ) > αΠ(D|γ) + βΣ(D|γ),

as desired.

Lastly, consider the case where there exists δ > 0 such that for any v, v′ ∈ (v̄− δ, v̄), p−1
D (v) = p−1

D (v′) =

p−1
D (v̄). Let v∗ := inf{v ∈ [r, 1)|p−1

D (v) = p−1
D (v′), ∀v, v′ ∈ (v, v̄)} and let c∗ := p−1

D (v+
∗ ). Then v∗ < v̄ and

c∗ > p−1
D (pD(0)+) since p−1

D not constant on [pD(0), v̄).

By definition, since p−1
D (v) = c∗ for all v ∈ (v∗, v̄), we must have (v∗, v̄) ⊆ argmaxp(p−c)D(p) and hence

(v − c∗)D(v) = ζ ⇐⇒ D(v) =
ζ

v − c∗
, ∀v ∈ (v∗, v̄),

for some ζ > 0. Now fix any ṽ ∈ (v∗, v̄) and notice that for any c̃ ∈ (p−1
D (v∗), c∗) and any ĉ ∈ (c∗, v̄), let

ζ(ĉ) := (ṽ − ĉ)D(ṽ) and ζ(c̃) := (v∗ − c̃)D(v∗), we must have

D(v) < min

{
ζ(ĉ)

v − ĉ
,
ζ(c̃)

v − c̃

}
,

for all v ∈ (v∗, ṽ). Thus, for any v > pD(0) that is close enough to pD(0), there exists c̃(v) ∈ (p−1
D (v∗), c∗)

,ĉ(v) ∈ (c∗, v̄) and v̂(v) ∈ (v, v̄) such that limv↓pD(0) c̃(v) = limv↓pD(0) ĉ(v) = c∗,

ζ(ĉ(v))

v̂(v)− ĉ(v)
=

ζ(c̃(v))

v̂(v)− ṽ(v)

and ∫ ṽ

0
D(v) dv =

∫ ṽ

0
D̂v(v) dv,

where

D̂v(v) :=



D(v), if v ∈ [ṽ, 1]
ζ(ĉ(v))
v−ĉ(v) , if v ∈ (v̂(x), ṽv]
ζ(ṽ(v))
v−ṽ(v) , if v ∈ (v∗, v̂(v))

D(v), if v ∈ (v, v∗]

D(v), if v ∈ (0, v]

and thus D̂v ∈ Ds. Moreover, such c̃(·) and ĉ(·) can be selected so that v̂(v) is decreasing in v and

limv↓pD(0) v̂(v) = ṽ.

Notice that for any such D̂v,

p−1

D̂v
(v) =



0, if v ∈ [0, v]

p−1
D (v), if v ∈ (v, v∗)

c̃(v), if v ∈ [v∗, v̂(v))

k̃(v), if v ∈ [v̂(v), v̄)

v̄, if x ∈ [v̄, 1].

,
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for some k̃(v) ∈ (c∗, k(v)). As such, for any v such that D̂v ∈ Ds, the deviation gain from D to D̂v is∫ 1

0
γ(p

D̂v
(v)D̂v(v) dv −

∫ 1

0
γ(p−1

D (v))D(v)) dv

>γ(k̃(v))(pD(0)D(pD(0))− vD(v)) +

∫ v

pD(0)
(γ(k̃(v))− γ(p−1

D (v))D(v) dv

−
∫ v̂(v)

v∗

(γ(k̃(v))− γ(c̃(v)))D̂v(v) dv,

where the strict inequality follows from k̃(v) > c∗ and that γ is strictly increasing.

Again, by definition, pD(0)D(pD(0)) ≥ vD(v) for all v ≥ pD(0). Also, let

∆(v) :=

∫ v

pD(0)
(γ(k̃(v))− γ(p−1

D (v)))D(v) dv −
∫ v̂(v)

v∗

(γ(k̃(v))− γ(c̃(v)))D̂v(v) dv.

Then ∆ is differentiable Lebesgue-almost everywhere and the derivative converges to

(γ(c∗)− γ(p−1
D (pD(0)+))D(pD(0))− lim

ĉ,c̃→c∗, ĉ>c̃
(γ(ĉ)− γ(c̃)) · lim

v↓pD(0)
v̂′(v) ·D(x̃) > 0

as v approaches pD(0), since v̂(v) is decreasing in v, c∗ > p−1
D (pD(0)+) and γ is strictly increasing. Thus,

∆(v) > 0 for v sufficiently close to pD(0).

Together, for v close enough to pD(0), there exists D̂v ∈ Ds such that

Σ(D̂v|γ) =

∫ 1

0
γ(p−1

D̂v
(v)D̂v(v) dv >

∫ 1

0
γ(p−1

D (v))D(v) dv = Σ(D|γ).

Meanwhile, let

Λ(v) :=

∫ 1

0
max
p

(p− c)D(p)γ(dc)−
∫ 1

0
max
p

(p− c)D̂v(p)γ(dc).

Again, for any v > pD(0), for any c ∈ [0, 1]\(0,p−1
D (v̂(v)))∪(c̃(v), k̃(v)), maxp(p−c)D(p) = maxp(p−c)D̂v(p),

which in turn, as in the previous case, implies that

Λ′(pD(0)) = 0.

Together, for v close enough to pD(0), there exists D̂v ∈ Ds such that

αΠ(D̂v|γ) + βΣ(D̂v|γ) > αΠ(D|γ) + βΣ(D|γ),

as desired.

Case 3: D(pD(0)) = 1

Notice that the arguments in case 2 rely only on the observations that D(v) = D(pD(0)) for all

v ∈ (0,pD(0)] As such, if D(pD(0)+) = 1, then we are back to case 2. Meanwhile, if D(pD(0)+) <

D(pD(0)) = 1, we may define

Q(v) :=

{
D(pD(0)), if v ∈ [0,pD(0)]

D(v), if v ∈ (r, 1].
.
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Then since the the arguments in case 2 do not depend on particular value of s, by the same arguments,

there exists Q̂v ∈ Ds̄ such that

αΠ(Q̂v|γ) + βΣ(Q̂v|γ) > αΠ(Q|γ) + βΣ(Q|γ)

for v > pQ(0) = pD(0) small enough; and that Q(v) = Q̂(v) = Q̂(0+) for some v ∈ (pD(0), 1), where

s̄ :=
∫ 1

0 Q(v) dv. Since v > pD(0) and Q(v) ≤ Q(pD(0)) = D(pD(0)), there exists ε > 0 such that

v(Q̂(x)− ε) = pD(0)D(pD(0)) and therefore D̂ ∈ Ds, where

D̂v(v) :=

{
Q̂(v)− ε, if x ∈ (0, v]

Q̂v(v), if v ∈ (v, 1]
.

Furthermore, by construction, p−1

Q̂v
(v) = p−1

D̂v
(v) for all v ∈ [0, 1], p−1

D (v) = p−1
Q (v) for all v ∈ [0, 1], Together,

we have

αΠ(D|γ) + βΣ(D|γ) = αΠ(Q|γ) + βΣ(Q|γ)

<αΠ(Q̂v|γ) + βΣ(Q̂v|γ)

=αΠ(D̂v|γ) + βΣ(D̂v|γ)

for some D̂v ∈ Ds, as desired. This completes the proof. �

B Proof of Proposition 3

Proof of Proposition 3. By Theorem 1, there exists an affine-unit-elastic demand Dη
π,k ∈ Ds such that

Wα,β(s, γ) =αΠ(Dη
π,k|γ) + βΣ(Dη

π,k|γ)

=α

[∫ k

0
[π + (k − c)η]γ(dc) +

∫ c̄

k
(1− c) π

1− k
γ(dc)

]
+ β[γ(k)(s− π − ηk)]

=α

[
π

1− k

(∫ c̄

0
γ(c) dc+ (1− c̄)+

)
+

(
η − π

1− k

∫ k

0
γ(c) dc

)]
+ βγ(k)[s− π − ηk)].

Let δ1 := απ/(1− k), δ2 := α(η − π/(1− k)), and δ3 := β(s− π − ηk). Clearly δ1, δ2, δ3 ≥ 0. Moreover, for

any κ : R+ → R, define a function ξκ : R+ × [0, 1] as follows:

ξκ(c|λ) := (1 + λ)e
−δ2c
δ3

∫ c

0

e
δ2x
δ3 (κ(x)− ξ̄)

δ3
dx,

for all c ≥ 0 and for all λ ∈ [0, 1], where

ξ̄ := [1 + δ1(e
δ2c̄
δ3 − 1)]−1

∫ c̄

0

e
δ2x
δ3

δ3
dx > 0.

Then ξκ(·|0) solves the following differential equation:

δ1ξκ(c̄|0) + δ2ξκ(c|0) + δ3ξ
′
κ(c|0) = κ(c), ξκ(0|0) = 0.
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Now let

κ∗(c) :=


κ̄, if c ∈ [0, k − ε1)

1− κ̄+ε2
ε1

(k − c), if c ∈ [k − ε1, k]

−ε2, if c ∈ (k,∞)

,

where ε1 > 0 and ε2 > 0 is small enough and κ̄ > 0 is large enough so that ξκ∗(c|0) > 0 for all c ∈ [0, c̄].

Then, for each λ ∈ [0, 1], let

γλ(c) := γ(c) +

∫ λ

0

∂

∂λ
ξ′κ∗(c|y) dy,

for all λ ∈ [0, 1] and for all c ∈ [0, c̄]. By construction, λ 7→ γλ(c) is differentiable for all c ∈ [0, c̄], γ0(c) = γ(c)

for all c, and

∂

∂λ
Wα,β(s, γλ)

∣∣∣∣
λ=0

=δ1

∫ c̄

0

(
∂

∂λ
γλ(c)

∣∣∣∣
λ=0

)
dc+ δ2

∫ k

0

(
∂

∂λ
γλ(c)

∣∣∣∣
λ=0

)
dc+ δ3

∂

∂λ
γλ(k)

∣∣∣∣
λ=0

=δ1ξκ∗(c̄|0) + δ2ξκ∗(k|0) + δ3ξ
′
κ∗(k|0)

=κ∗(k)

<0

and yet
∂

∂λ

(∫ c

0
γλ(x) dx

) ∣∣∣∣
λ=0

=

∫ c

0

(
∂

∂λ
γλ(x)

∣∣∣∣
λ=0

)
dx = ξκ∗(c|0) > 0,

for all c ∈ [0, c̄]. As a result, within the family of (regular) technologies {γλ|λ ∈ [0, 1]}, for λ > 0 small

enough, it must be that ∫ c

0
[γλ(x)− γ(x)] dx > 0,

for all c ∈ [0, c̄]; and that

Wα,β(s, γ) > Wα,β(s, γλ).

This completes the proof. �
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